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ABSTRACT 

Finding tracks, track vertices and event vertices with neural networks from 
drift chamber signals is discussed. Simulated feed-forward neural networks 
have been trained with back-propagation to give track parameters using Monte 
Carlo simulated tracks in one case and actual experimental data in another. 
Effects on network performance of limited weight resolution, noise and drift 

chamber resolution are given. Possible implementations in hardware are dis- 
cussed. 

1. Introduction 

Determining track parameters from drift chamber signals with neural networks 
has been discussed previously. Both Hopfield’J and feed-forward type networks3 have 
been used. The work here is aimed towards applications of neural networks in fast 
trigger systems. Feed-forward networks are therefore emphasized since they are now 
becoming available in VLSI hardware. In such trigger schemes, the drift chamber 
signals would be fed directly into neural nets which would then pass tracking in- 
formation to higher level trigger processors (perhaps also composed of neural nets) 
which in turn would decide if an event is to be recorded on tape. 

High energy experiments make extensive use of drift chambers to track charged 
particles. The particles ionize molecules in a gas and the resulting free electrons drift 
towards a aenae wire at a high positive voltage. When the electrons approach close 
to the wire, the high electric field there causes an avalanche of ionization which 
produces a measurable signal at the ends of the wires. Field wires and/or planes at 
negative or ground voltages separate the sense wires and help shape the electrostatic 
fields. Measuring the time between when the track crossed the chamber and when the 
signal appears gives the electron drift time. By knowing the velocity of the electrons 
in the gas, one can calculate the drift distance. In turn, knowing the coordinate 
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of the wire gives a space point. There are typically many layers of sense wires to 
provide several space points along the tracks. 

We discuss two applications of neural nets to drift chamber tracking. In the first 
case we simulate particles traversing a three layer drift chamber that is patterned 
after the Tevatron DO experiment muon chambers. The neural net uses the resulting 
drift times to determine the slopes and intercepts of the tracks. In the second case, we 
used data from an experiment at the Tevatron p&i collider to train a net to determine 
the vertex (i.e. intercept of a track with the beam line) of a track traversing a section 
of a chamber adjacent to the beam line. Combining the vertices found for all sections 
then provides the event vertex of the pl?~ collision. 

2. Muon Chamber Tracking 

Many detector systems for colliding beam experiments have sets of drift cham- 
bers for detecting high energy muons emitted from the interactions. The muon sys- 
tem ususlly consists of several chambers separated by large slabs of iron which filter 
out most particles except for muons. Because of the large area they must cover, the 
chambers usually only have 3 or 4 layers of sense wires to minimize cost. 

Here we investigate the possible use of neural networks to find track slope and 
intercept in a typical muon chamber design. This could be useful for fast identifica- 
tion of high momentum muons pointing back towards the interaction vertex. Events 
with such tracks are often of great interest. 

Figure 1 shows three examples of simulated tracks in a section of a drift cham- 
ber fashioned after the design being used in the DO experiment at the Tevatron 
pp collider.’ Here only 6 sense wires are shown and the field and ground planes 
are omitted. The wires are spaced apart about 1Ocm horizontally and about 2.5cm 
vertically. The cells in a layer are combined into pairs such that two sense wires are 
connected electrically at one end. The signal from one sense wire goes to the stop 
of a time to voltage converter (TVC) which gets its start from the beam crossing 
timing. The TVC output voltage is therefore proportional to the drift time. One 
sense wire also sends a stop signal to a second time to voltage converter which gets 
its start from the other sense wire. This dTVC output voltage is proportional to 
the position along the sense wires where the ionization occurs. Although the dTVC 
signal indicates which cell of a pair the track passed, there is still an ambiguity in 
determining which. side of the sense wire the track crossed. The cells in the layers 
are staggered with respect to one another to help resolve this lefl-tight ambiguity. 

A neural network was designed to find the slope and intercept of tracks passing 
through a set of 6 cells (or 3 pairs). Although the dTVC gives information in the 
dimension along the sense wire, the tracking here is only done in the plane normal 
to the wires. The dTVC simply indicates through which cell of the pair the track 
passed. 

Figure 2 shows the architecture of the net. The three TVC voltages and the 
three dTVC voltages are inputs to the net. There are 64 hidden and 64 output 
units. The output units are divided into two sets of 32 units, with one set providing 

2 



the intercept of the track in the plane of the middle layer of wires and the other set 
giving the slope of the track. Each output neuron corresponds to a bin in intercept or 
slope. The net will be trained to excite only those output neurons which correspond 
to the slope and intercept of the track. The target patterns are given as Gaussian 
activations across 3 or 4 neurons so that the calculated average of the slope and 
intercepts can be more precisely calculated than just the width of a single bin. 

A standard back-propagation algorithm was used to train the net.s The units 
had sigmoid transfer functions of the type 

fj(%) = 

1.0 

1.0 + eXp(Zj) 

where rj is 
2j = 

T 
WjkVk + WjbVbm. 

Here Vk is the output voltage of unit k in the preceding layer and wjk is the weight for 
the connection between units j and k. A bias voltage and weighting is also provided. 

The net was trained for several hundred passes through a set of 10000 patterns. 
Both the TVC and dTVC ranged from 0.0 to 3.5~. The training input values were 
derived from the exact drift distances. Results here are given, unless otherwise noted, 
for a test set with the drift distances smeared with a Gaussian distribution of sigma 
equal to 400~77~ This roughly simulates the drift resolution of the actual chambers. 

Figure 1 shows the generated tracks and the tracks found by the net. Also 
shown are the excitations of the net output units. The generated track parameters 
are compared to the net outputs. The net value is taken as the average over the 
range of f2 units around the bin with the largest excitation. For these cases the net 
came quite close to the generated track. Notice in the output excitations that there 
are sometimes units excited due to ambiguities in the tracking. This problem occurs 
because with only 3 layers, the staggering of the cells is not always sufficient to 
resolve the ambiguities, especially for tracks at wide angles with respect to vertical. 

Figure 3 shows distributions of the differences in the parameters between the 
target values and the network for the test sets. The sigmas of the Gaussian fits are 
490pm and 0.014rad (= 0.8’) for the intercept and slope respectively. Because of 
the tracking ambiguities the distributions are not exact Gaussians. Over 95% of the 
entries are within 3 sigma of the peaks. 

Although the net was trained on patterns without drift smearing, the above 
results show that the net still performs well on patterns with smearing. Figure 4 
shows the dependence of the tracking accuracy of the net on the drift distance 
smearing. The net resolution sigmas are weakly dependent on the drift smearing at 
first but then begin to increase linearly with increase in drift smearing. 

As will be discussed in the last section, implementation of the net in hard- 
ware could require a decrease in the precision of the weight values (largest weight 
values were around 10.0). To investigate the effect of degraded weight precision, we 
truncated the weight values and then determined the net resolution for the test set. 
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The table shows the effect on the resolution of truncating the fractional part of the 
weight from the full floating point value down to integer values. Only for the inte- 
ger case do the results become substantially worse. However, if “chip in the loop” 
training can be done, even integer weights might be sufficient. 

Truncation of Weights vs Tracking Resolution 
Weight Intercept Resolution Slope Resolution 
Full precision 490pm 0.800 
2 decimal places 500/km 0.80’ 
1 decimal place 550pm 0.92” 
0 decimal places 2900pm 3.40 

8. Vertex Finding 

In proton-antiproton collision expdriments, the intercept of a track at the beam 
line is taken as the track vertez or origin. The primary tracks in an event originate 
from the point where the initial interaction occurred. This point is referred to as 
the went vertex. Tracks in the detector may also have come from decays of primary 
particles and from interactions of the primaries with intervening materials. The 
origins of these tracks are called secondary vertices. 

In a manner similar to the track intercept finding method discussed in section 
2, a net can be trained to find the intercept of the track at the beam line instead 
of in a plane of the chamber. The position along the beam line where the majority 
of these track vertices originated in a given event is taken as the best estimate for 
the event vertex position. Fast determination of the event vertex could be useful, 
for example, for SSC experiments where there will be two or three pp interactions 
in every beam crossing. 

A small 3-layer drift chamber (called the z-chamber) was placed beside the 
beam pipe in experiment E735 at the Tevatron proton-a&proton collider to find 
the track and event vertex positions along the beam line. Using actual data taken 
with the z-chamber, a net was trained to find track vertices in subsections of the 
chamber. Adding the outputs of all the subsection nets then provided the position 
of the event vertex. The results of this study are discussed in detail in reference 5 
so only a brief review will be given here. 

Figure 5 shows a schematic drawing of an event and the resulting hits in the e- 
chamber. Since the chamber had 288 wires, it was broken up into smaller subsections 
of 18 wires each (3 layers, 6 wires per layer) so that the net could be of manageable 
size. The drift times (normalized to 1.0) were fed into a net of 18 inputs, 128 hidden 
units and 64 output units. Figure 6 shows the architecture of the subsection net. In 
a similar manner to the muon chamber net, the output units corresponded to bins 
over a range of rt30cm from the center of each subsection. The target values (as 
calculated by a conventional tracking algorithm) were given as Gaussian* over 3 or 
4 bins with sigma of 0.5cm. 
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Figure 7 shows examples of tracks in the subsection nets and the resulting 
net outputs. Often the net finds the track vertex even when there are extraneous 
noise or background hits or more than one track. Note that some output units are 
activated at positions corresponding to “alternative” choices due to the left-right 
ambiguities. The tracking resolution in the z-chamber was 500pm and the chamber 
vertex resolution was 0.5cm. Figure 8 shows distributions of the differences between 
the fit vertex and the net vertex for cases of one track, one track plus background 
hits and two tracks in the subsection. The resolution degrades with increases in 
number of hits because of the problem with ambiguities. 

The overlapping subsections were spaced every two cells. In a hardware imple- 
mentation each subsection would have its own net and the processing would be done 
in parallel. Here the drift times of each subsection were fed sequentially into the net 
simulation and the net output values added to the cumulative distribution. After 
all the subsections were processed, the peak in the resulting distribution was taken 
as the event vertex position. Figure 9 shows some examples of whole events and 
the cumulative net distributions. Note that the cumulative distribution again gives 
alternative peaks both because of ambiguities and to the fact that not all tracks 
point to the same vertex. Secondary tracks, such as those from interactions of the 
primaries with beam pipe material, will usually not point back to the event vertex. 
As much as 40% of the tracks in an event can be from secondary interactions. The 
s-chamber only covered a small portion of the total solid angle so it saw only a small 
sample of the tracks. This causes considerable fluctuations in the ratio of primary 
tracks to secondary tracks in the z-chamber. Figure 9(d) shows an example where 
only one of 5 or 6 tracks in the chamber point to the vertex chosen by the fitting 
algorithm as the best choice for the event vertex while the neural net method chose 
a different vertex. The method here should improve if used in chambers that are 
bigger and sample a larger number of tracks. 

The net event vertices are compared to that obtained from the conventional 
off-line track fitting methods and to the “time-of-flight” vertex. The latter system 
uses the hit times of particles traversing scintillators near the beam pipe to find 
the event vertex. The TOF system is not as accurate as tracking but it’s signals are 
available for fast trigger applications. Figure 10 shows distributions of the differences 
between the tracking vertex and the net vertex and the TOF vertex. The net gives 
a sigma of about 1.4 cm and is within 10 cm of the fit vertex 89% of the time. 
This compares favorably to the TOF method which gave 3.8 cm resolution and had 
vertices within 10 cm of the fit vertex 83% of the time. 

4. Discussion 

We have shown that a neural network can be trained to give track parameters 
from drift chamber signal inputs. Both simulated and experiment data have been 
fed to neural net simulations and they perform well despite finite drift resolution, 
noise, limited weight precision, etc. 

The “histogram” manner used here for encoding the tracking parameters in the 
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output units of the network provides (1) a way far the net to give possible alternative 
answers in those cases where there are ambiguities, and (2) allows a straight forward 
way to combine outputs from separate sections of the detectors (somewhat similar to 
the histograming method of pattern recognition.) Using only a single neuron whose 
value was proportional to the slope, for example, would obviously reduce the size of 
the net required but it would not have these two advantages. 

Work is now underway to implement in hardware the kinds of networks dis- 
cussed here. We are currently experimenting with the Intel ETANN chip.’ This ana- 
log chip has 64 inputs (optionally 128 inputs can be clocked through sequentially in 
two sets of 64 inputs) and 16 bias units totally interconnected to 64 neurons. The 
chip has two sets of 80x64 weights of about 6 to 8 bits precision. Signals propagate 
through the first set of weighted connections to the neurons whose outputs are ei- 
ther available directly or can be clocked back through the second set of weights to 
give 3 layer performance by reuse of the neurons. One such chip could handle the 
muon tracking net and 3 chips (one in 128 input mode) could do the z-chamber 
track vertex finding. If the current tests are successful, we hope to begin developing 
a neural network tracking system in the near future. 
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Figure 1: Simulated tracks in a DO type muon drift chamber. Sense wires are shown; 
field and ground planes omitted. Tracks produce drift time signals which are shown 
as vertical bars to sides of wires. The net output units are activated as shown (see 
fig. 2). The position of the largest activated units gives the net intercept and slope. 
The + indicates target values. 



NEURAL NETWORK FOR DO MUON CHAMBER TRACKING 

Input = 3 DrUt times + 3 signal transit times 
Output = 32 0.63cm bins Irom -0cm to +20cm 

+ 32 0.07rad bins from -l.Orad to 1.2rsd 

x¶r*et Dmlib”u.an: 

Output Dlstrlbution: 

output units: 

Hidden Units: 

Input Units: 

DC Signals: 

Figure 2: The neural network architecture used to determine the slope and intercept 
from signals produced by tracks traversing a 6 cell portion of a DO type muon drift 
chamber. For clarity only some of the connections are shown. 



1 90 
; 80 
3 70 
E 1 60 o-49opm 

50 
40 
30 
10 

i (4 

10 
0 4.5~0.+-0.3-0.2-0.1 0 0.1 03 0.3 0.1 D.! 

TOrp.4 ,ntrupt - N,twch Intucept (cm) 
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Figure 4: Effects of smearing drift resolution on net tracking resolution. (a) Drift 
resolution vs net intercept resolution, (b) drift resolution vs net slope resolution. 
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Figure 5: A schematic of the a-chamber with hits from a pp event. Only the sense 
wires are shown; field wires, beam pipe, etc. are omitted. The event vertices found 
by three methods are shown: track fitting, time-of-Eight, and a neural network sim- 
ulation. 



NEURAL NETWORK FOR Z-CHAMBER SUB-SECTION VERTEX 

Input = 18 Sense Wire Times Normalized to 1.0 
Output = 60 l.Ocm Bins from -30~~x1 to +30cm 

+ 1 Bin for Z<-30cm + 1 Bin for Z>+30cm 

Target Distribution: 

Output Distribution: 

Output Units: 

Hidden Units: 

Input Units: 

Wire #: 
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Figure 6: The neural network architecture used to determine the vertex position of 
tracks in a 18 wire subsection of the z-chamber. Only some of the connections are 
shown. 
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Figure 7: Some examples of tracks in 18 wire subsections of the e-chamber. The 
vertical bars represent the drift time signals. The relative activations of the net 
output units are shown. The unit with maximum activation is indicated by the x 
and its position is compared to that obtained by track fitting. 
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Figure 8: Distributions of the differences between the target track vertices and the 
net vertices for subsections having hits from (a) single tracks (b) single tracks plus 
background hits and (c) two tracks. 
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Figure 9: Examples of z-chamber events. The cumulative distribution of adding all 
subsection neural network outputs is indicated along the beam line. The maximum 
of the distribution is indicated by an x and compared to the vertex found by track 
fitting and by the TOF system (symbols same as figure 5). 
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Figure 10: (a) Distribution of differences between the fit event vertex and the neural 
network event vertex. (b) Differences in fit event vertices and TOF vertices. 


